Skip to content

Round 1

Overview

This round was the first of three qualification rounds for the ILO. It covered the topics of logical validity, entailment, proof theory, and formal reasoning techniques.

Problem 1

Determine whether each logical statement is valid or contingent:

StatementAnswer
(p ∧ ¬p) ⇒ (q ∨ r)Valid
(p ⇒ (q ⇒ r)) ⇒ ((p ⇒ q) ⇒ (q ⇒ r))⚠️ Contingent
(p ∨ q) ⇒ (p ∧ q)⚠️ Contingent
(p ⇒ q) ⇒ ¬(p ⇒ ¬q)⚠️ Contingent
(p ⇒ ¬p) ∨ (¬p ⇒ p)Valid

As a reminder, Valid means that the statement is true for all possible truth assignments of the variables. On the other hand, Contingent means that the statement is true for at least one truth assignment and false for at least one truth assignment of the variables.

The best way to determine whether a statement is valid or contingent is to create a truth table for the statement. While time-consuming, it basically guarantees that you will get the correct answer, as well as visualizes the truth values which may make it easier to understand each statement.

For this problem, these are the truth tables for each statement in descending order:

Truth Table for (p ∧ ¬p) ⇒ (q ∨ r)

pqr¬pp ∧ ¬pq ∨ r(p ∧ ¬p) ⇒ (q ∨ r)
TTTFFTT
TTFFFTT
TFTFFTT
TFFFFFT
FTTTFTT
FTFTFTT
FFTTFTT
FFFTFFT

Always True → Valid

Truth Table for (p ⇒ (q ⇒ r)) ⇒ ((p ⇒ q) ⇒ (q ⇒ r))

pqrq ⇒ rp ⇒ qp ⇒ (q ⇒ r)(p ⇒ q) ⇒ (q ⇒ r)(p ⇒ (q ⇒ r)) ⇒ ((p ⇒ q) ⇒ (q ⇒ r))
11111111
11001011
10110101
10010111
01111111
01001110
00111111
00011111

⚠️ Not Always True → Contingent

Truth Table for (p ∨ q) ⇒ (p ∧ q)

pqp ∨ qp ∧ q(p ∨ q) ⇒ (p ∧ q)
TTTTT
TFTFF
FTTFF
FFFFT

⚠️ Not Always True → Contingent

Truth Table for (p ⇒ q) ⇒ ¬(p ⇒ ¬q)

pq¬qp ⇒ qp ⇒ ¬q¬(p ⇒ ¬q)(p ⇒ q) ⇒ ¬(p ⇒ ¬q)
TTFTFTT
TFTFTFT
FTFTTFF
FFTTTFF

⚠️ Not Always True → Contingent

Truth Table for (p ⇒ ¬p) ∨ (¬p ⇒ p)

p¬pp ⇒ ¬p¬p ⇒ p(p ⇒ ¬p) ∨ (¬p ⇒ p)
TFFTT
FTTFT

Always True → Valid

Problem 2

Determine whether each logical statement is true or false.

StatementAnswer
If Γ ⊨ (φ ∨ ψ), then Γ ⊨ φ or Γ ⊨ ψ.False
If Γ ⊨ (φ ∧ ψ) and Γ ⊨ (φ ∧ ¬ψ), then Γ ⊨ φ.True
If Γ ⊨ (φ ∨ ψ) and Γ ⊨ (φ ∨ ¬ψ), then Γ ⊨ φ.True
If φ ⊨ ψ and ¬φ ⊨ ψ, then φ is unsatisfiable.False
If φ ⊨ ψ or ψ ⊨ φ, then φ and ψ are consistent.False

Problem 3

For each question, select the correct multiple-choice answer.

  1. Which of the following is the answer to question 2?

    • A. B
    • B. A
    • C. D
    • D. C
    • ✅ Correct Answer: D
  2. Which of the following is the answer to question 3?

    • A. C
    • B. D
    • C. B
    • D. A
    • ✅ Correct Answer: C
  3. Which of the following is the answer to question 4?

    • A. D
    • B. A
    • C. B
    • D. C
    • ✅ Correct Answer: B
  4. Which of the following is the answer to question 1?

    • A. A
    • B. B
    • C. C
    • D. D
    • ✅ Correct Answer: A

Problem 4

Complete the following fitch proof by inserting the correct logical steps: img_1.png

Problem 5

Complete the following fitch proof by inserting the correct logical steps: img.png